1. The only integer pair with a difference equal to the quotient is (4, 2). Find the sum of the only pair of positive fractions with denominator 8 in lowest terms with this property.
a. 11.0
b. 11.25
c. $\quad 11.5$
d. 11.75
e. 12.0

The property can be represented by: $a-b=\frac{a}{b}$
Solving the equation for $\mathrm{a}: a-b=\frac{a}{b} \rightarrow a b-b^{2}=a \rightarrow a(b-1)=b^{2} \rightarrow a=\frac{b^{2}}{b-1}$
Let $b=\frac{c}{8}$ to represent one of the positive fractions with denominator 8 in lowest terms.

Substituting into $a=\frac{b^{2}}{b-1}$ gives $a=\frac{\frac{c^{2}}{64}}{\frac{c}{8}-1} \rightarrow \quad a=\frac{c^{2}}{8 c-64}$

Since a is a fraction with denominator $8,8 c-64=8 \rightarrow c=9$

Substituting $c=9$ gives $a=\frac{81}{8}$ and $b=\frac{9}{8} \quad$ and the sum $a+b=11.25$
2. The interior angles of an n-gon form an arithmetic sequence with the first term 128° and common difference 4°. There are two values of n which satisfy this condition. Find their sum.
a. 20
b. 21
c. 22
d. 25
e. 27

The sum of the interior angles of an n-gon is 180(n-2).

The arithmetic sequence of interior angles of the n-gon is represented by:

$$
128+132+136+\cdots+(128+4(n-1))
$$

The condition is satisfied when

$$
128+132+136+\cdots+(128+4(n-1))=180(n-2)
$$

Using the formula for the sum of an arithmetic sequence, this equation becomes

$$
\frac{n}{2}(128+(128+4(n-1)))=180(n-2)
$$

Which can be simplified to the quadratic equation

$$
n^{2}-27 n+180=0
$$

And the solutions are $n=12$ and $n=15$, so the sum is 27 .
3. For the function $f(x), f(1)=4$. Also, $f(x) * f(y)=f(x+y)+f(x-y)$ for all real numbers x and y. Find $f(5)$.
a. 720
b. 724
c. 728
d. 732
e. 736

Using the property $f(x) \cdot f(y)=f(x+y)+f(x-y)$, let $x=1$ and $y=0$

$$
f(1) \cdot f(0)=f(1)+f(1)
$$

Since $f(1)=4, f(1) \cdot f(0)=f(1)+f(1) \rightarrow 4 \cdot f(0)=8 \rightarrow f(0)=2$
Now, using the property $f(x) \cdot f(y)=f(x+y)+f(x-y)$, let $x=1$ and $y=1$

$$
\begin{gathered}
f(1) \cdot f(1)=f(2)+f(0) \\
4 \cdot 4=f(2)+2 \\
f(2)=14
\end{gathered}
$$

Now, using the property $f(x) \cdot f(y)=f(x+y)+f(x-y)$, let $x=2$ and $y=1$

$$
\begin{gathered}
f(2) \cdot f(1)=f(3)+f(1) \\
14 \cdot 4=f(3)+4 \\
f(3)=52
\end{gathered}
$$

Now, using the property $f(x) \cdot f(y)=f(x+y)+f(x-y)$, let $x=3$ and $y=2$

$$
\begin{gathered}
f(3) \cdot f(2)=f(5)+f(1) \\
52 \cdot 14=f(5)+4 \\
f(5)=724
\end{gathered}
$$

