Since $356 x y$ is a multiple of 9 , its digits must sum to a multiple of 9 . Further, $356 x y$ has five different digits.

The sum of all five digits already exceeds 9 . The sum cannot be 18 either, because $x+y$ would equal 4 which is not possible if all digits are unique. The sum cannot be 36 because $\mathrm{x}+\mathrm{y}$ would be 22 .

If the sum of the digits is 27 , then $x+y=13$. The only unique addends could be 4 and $9 ; 5$ and 8 ; and 6 and 7 . Since 3,5 , and 6 cannot be used, the only possible addends are 4 and 9 .

Since $x<y, x=4$ and $y=9$. So, $2 x+y=2(4)+9=17$.
\#2

$$
\begin{gathered}
\left(\log _{6} x^{4}\right)\left(\log _{x} 6\right)^{2}=2 \\
\left(4 \log _{6} x\right)\left(\log _{x} 6\right)\left(\log _{x} 6\right)=2 \\
\left(\frac{4 \log x}{\log 6}\right)\left(\frac{\log 6}{\log x}\right)\left(\frac{\log 6}{\log x}\right)=2 \\
\left(\frac{\log x}{\log 6}\right)\left(\frac{\log 6}{\log x}\right)\left(\frac{\log 6}{\log x}\right)=\frac{1}{2}
\end{gathered}
$$

Using change-of-base:

Simplifying common factors:

$$
\begin{gathered}
1 \cdot\left(\frac{\log 6}{\log x}\right)=\frac{1}{2} \\
\left(\frac{\log 6}{\log x}\right)=\frac{1}{2} \\
\log _{x} 6=\frac{1}{2} \\
x^{\frac{1}{2}}=6 \\
x=36
\end{gathered}
$$

This solution satisfies the inequality $10<x \leq 50$

Conditional Probability
Let $\mathrm{A}=\{$ student is a senior $\}$
Let $B=\{s t u d e n t$ is a female $\}$
Let $\mathrm{C}=\{$ student is a math major $\}$
$\mathrm{P}($ student is a senior \mid student is a female $)=\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\frac{P(A \cap B)}{P(B)}=0.64$
$\mathrm{P}($ student is a senior and a math major \mid student is a female $)=\mathrm{P}((\mathrm{A} \cap \mathrm{C}) \mid \mathrm{B})=\frac{P(A \cap B \cap C)}{P(B)}=0.36$
$\mathrm{P}($ student is a math major \mid student is a senior and female $)=\mathrm{P}(\mathrm{C} \mid(\mathrm{A} \cap \mathrm{B}))=\frac{P(A \cap B \cap C)}{P(A \cap B)}$
$P(C \mid(A \cap B))=\frac{P(A \cap B \cap C)}{P(A \cap B)}=\frac{0.36 \bullet P(B)}{0.64 \bullet P(B)}=\frac{0.36}{0.64}=\frac{36}{100} \bullet \frac{100}{64}=\frac{9}{16}$

